"Latvia" Former Soviet Union Military Bases
Appendix XXIV
Anti-Handling Device
An anti-handling device is an attachment to or integral part of a landmine or other munition e.g. some fuze types found in general purpose air-dropped bombs, cluster bombs and sea mines. It is specifically designed to prevent tampering. When the protected device is disturbed it detonates, killing or injuring anyone within the blast area. There is a strong functional overlap of booby traps and anti-handling devices: a munition with an anti-handling device fitted has, for all intents and purposes, been booby-trapped.
     Landmine anti-handling devices.
The typical configuration of anti-handling devices used with M15 anti-tank landmines. The upper diagram shows a pull-fuze screwed into a secondary fuze well in the side of the mine. Additionally, an M5 anti-lift device has been screwed into another fuze well, hidden under the mine. An inexperienced de-miner might detect and render safe the pull-fuze, but then be killed when he lifted the mine, triggering the M5 pressure-release firing device underneath.
The lower diagram shows two anti-tank landmines connected by a cord attached to the upper mine's carrying handle. The cord is attached to a pull fuze installed in a secondary fuze well in the bottom mine.
Anti-handling devices serve two military purposes:
  • To prevent the capture and reuse of the munition by enemy forces.
  • To hinder bomb disposal or demining operations, both directly and by deterrence, thereby creating a much more effective hazard or barrier.
Anti-handling devices greatly increase the impact of munitions on civilian populations in the areas in which they are used because their mechanisms are so easily triggered. An unexploded bomb may or may not detonate if it is lifted or overturned, whereas an anti-tank mine with an anti-handling device fitted is almost guaranteed to detonate if it is lifted/overturned, because it is specifically designed to do so. Additionally, munitions fitted with anti-handling devices increase the difficulty and cost of post-conflict clearing operations, due to the inherent dangers of attempting to render them safe.
Not all munitions will have an anti-handling device fitted or enabled. Perhaps one in ten antitank mines in a large defensive minefield will have booby-trap firing devices screwed into their secondary fuze wells. Even so, de-miners and EOD personnel are forced to assume that all items they encounter may have been booby-trapped, and must therefore take extra precautions. This has the effect of significantly slowing down the clearance process, even allowing for the fact that the anti-tank mines in question may be interspersed with various different types of minimum metal antipersonnel mines such as the VS-50 or TS-50, some of which can also have anti-handling features.
Technology to incorporate sophisticated anti-handling mechanisms in fuzes has existed since at least 1940 e.g. the Luftwaffe's ZUS-40 anti-removal fuze [See Full Diagram] "of which 3 slightly different versions existed" which was used during the London Blitz and elsewhere. ZUS-40s were designed to fit underneath most Luftwaffe bomb fuzes. When a delayed-action bomb containing a ZUS-40 was dropped on a target, the massive jolt after it hit the ground freed a ball-bearing inside the ZUS-40, thereby arming a spring-loaded firing pin. However, so long as the main bomb fuze remained inside its fuze well, the cocked firing pin in the ZUS-40 was prevented from springing forward. ZUS-40s were often fitted underneath a type 17 clockwork long delay fuze, which gave up to 72 hours delayed detonation. Rendering safe a type 17 fuze was normally a simple and straightforward process i.e. unscrew the fuze locking ring, remove the fuze
from its pocket in the side of the bomb and unscrew the gaine. However, fitting a ZUS-40 underneath a type 17 fuze made the render-safe process much more complicated and dangerous. Removing the main time-delay fuze more than 2cms from its fuze pocket "without neutralizing the anti-handling device underneath" automatically released the cocked firing pin inside the ZUS-40, which sprang forward to strike a large percussion cap, thereby causing detonation
of the bomb and the death of anyone kneeling beside it. Because the ZUS-40 was designed to be concealed underneath a conventional bomb fuze, it was very difficult to know whether a particular bomb was fitted with an anti-handling device or not. In any case, many electrically fired German bomb fuzes "which could be fitted above a ZUS-40" already had a tiny pendulum-based "trembler" device inside them, which closed the circuit and triggered detonation if the bomb was subjected to rough handling. Some German anti-handling fuzes were even more sophisticated and therefore particularly dangerous to EOD personnel e.g. the type 50 and 50BY fuzes. These were normally fitted to 250/500kg bombs and contained two mercury tilt switches which detected movement across vertical and horizontal axes. The fuzes fully armed themselves approximately 30 seconds after hitting the ground. Subsequently, if the bomb was moved in any way, the mercury switch completed an electrical circuit and triggered detonation. To complicate matters still further, German bombs could have two separate fuze pockets fitted, with different fuze types screwed into each one. As a result, one bomb could incorporate two separate anti-handling devices working independently of each other e.g. a type 17 clockwork fuze with a ZUS-40 hidden underneath it screwed into one fuze pocket, and a type 50BY in the other. Although the designs of these anti-handling fuzes varied, all were specifically designed to kill bomb disposal personnel who had the task of rendering them safe.
     Cutaway view of an M4 anti-tank mine dating from circa 1945, showing two
     additional fuze wells designed for use with booby-trap firing devices. Either .
     or both fuze wells may have firing devices screwed into them if required
        A stack of five M15 mines dating from circa 1960s. The top two mines show additional fuze wells
Allied forces developed their own designs of anti-handling devices during World War II. For example, the American M123A1, M124A1, M125 and M131 series of chemical long delay tail-fuzes "which remained in service until circa 1960s" were used in air-dropped bombs. Frequently fitted to M64 "500 pounds", M65 "1000 pounds" and M66 "2000 pounds" general-purpose bombs, these fuzes were primarily designed to operate as chemical long-delay fuzes, with settings ranging between 15 minutes and 144 hours. The time delay mechanism was simple but effective: after being dropped from the aircraft a small propeller at the rear of the bomb revolved, gradually screwing a metal rod into the fuze, crushing an ampoule of acetone solvent contained within it. When this happened the fuze was fully armed and the timer countdown had started. The acetone soaked into an absorbent pad next to a celluloid disk which held back a spring-loaded firing pin from a percussion cap connected to an adjacent detonator. Acetone slowly dissolved the celluloid disk, gradually weakening it until the cocked firing pin was released and the bomb detonated. The time delay of the fuze varied according to the acetone concentration and the thickness of the celluloid disk. Removing a chemical long delay fuze from a bomb after it had been dropped would have been a straightforward process had it not been for the fact that there was an integral anti-withdrawal mechanism designed to kill anyone who tried to render the bomb safe: fuzes such as the M123 "and its derivatives" contained a tiny ball-bearing at the lower end which slid out of a recess when the fuze armed itself a few seconds after being released from an aircraft. The ball-bearing jammed into the screw-threads inside the fuze well, preventing the fuze from being removed. Because the lower end of the fuze was locked in place deep inside the bomb "where it was hard get at" this posed major problems for enemy EOD personnel: attempting to unscrew a fully armed chemical long-delay fuze caused it to separate into two separate fuze assemblies i.e. upper and lower. This action automatically triggered detonation by releasing the cocked firing pin in the lower fuze assembly, with lethal results for anyone nearby. Although many decades have passed, unexploded bombs dating from World War II with chemical long-delay fuzes fitted remain extremely hazardous to EOD personnel. This is because corrosion makes the fuze mechanism "which is still holding back the spring-loaded firing pin from a percussion cap" much more sensitive to disturbance. There is a high risk that even minor movement "e.g. gently rotating the bomb casing to gain better access to the rear end" will release the firing pin. 
     Side view of an M19 anti-tank mine, dating from circa 1970s showing an
     additional fuze well on the side of the mine "sealing cap has been removed"
     designed for use with booby-trap firing devices. There is another empty fuze
     well "not visible" located underneath the mine.
The British "Number 37 Long Delay Pistol" "used by RAF Bomber Command during World War II" was another chemical long delay fuze which used a very similar type of anti-removal mechanism. A later design of British nose fuze called the number 845 Mk 2 operated purely in anti-disturbance mode. It contained a mercury switch which triggered detonation if the bomb was moved after a 20 second arming delay, which started when the bomb hit the ground. 
Since then, many nations have produced munitions with fuzes which have some form of anti-handling function. Alternatively, they have produced munitions with features which make it very easy to add an anti-tamper function e.g. extra (but empty) threaded fuze wells on anti-tank landmines, into which the detonators on booby-trap firing devices "plus booster attachments" can be screwed.
Classes of Anti-Handling Devices
US Army field manual FM 20-32 classifies four classes of anti-handling devices:
  • Anti-Lifting Devices. A device which initiates an explosion when a protected mine is lifted or pulled out of its hole.
  • Anti-Disturbance Device. A device which initiates an explosion when a protected mine is lifted, tilted or disturbed in any way e.g. a notable variant of the VS-50 mine featuring an integral mercury switch.
  • Anti-De-fuzing Device. A device which initiates an explosion when an attempt is made to remove a fuze from a protected mine.
  • Anti-Disarming Device. A device which initiates an explosion when an attempt is made to set the arming mechanism of a mine to safe.
Types of Anti-Handling Fuzes
The different classes of anti-handling devices are normally created using a variety of fuzes. This is a list of the types of fuzes used as anti-handling devices:
  • Pull Fuzes, these are typically installed in secondary fuze wells located on the side or bottom of landmines. The fuze is normally connected to a thin wire attached to the ground, so the wire is automatically pulled if the mine is lifted, shifted or disturbed in any way. Simple pull-fuzes release a spring-loaded striker. More sophisticated versions are electronic i.e. feature a break-wire sensor which detects a drop in voltage. Either way, pulling on the hidden wire triggers detonation.
  • Anti-lifting Fuzes, these are frequently screwed into an auxiliary fuze pocket located underneath anti-tank landmines. The act of lifting or shifting the mine releases a  cocked striker, triggering detonation. The M5 universal firing device is a classic example of an anti-lift fuze. Its standard gauge screw thread allows it to be fitted to various munition types, ranging from an M26 hand grenade up to an M15 antitank landmine. 
  • Tilt/Vibration Switches, this is a fuze installed inside the device which triggers detonation if the sensor is tilted beyond a certain angle or is subject to any vibration. Typically, some form of pendulum arrangement, spring-loaded "trembler" or mercury switch is used to detect this.
  • Anti-mine Detector Fuzes, developed during the Second World War to detect the magnetic field of mine detectors.
  • Electronic Fuzes, modern electronic fuzes may incorporate anti-handling features. Typically, these fuzes incorporate one or more of the following sensors: seismic, magnetic, light sensitive, thermal or acoustic sensitive. Potentially, such fuzes can discriminate between various types of mine clearance operations i.e. resist activation by devices such as mine flails, plows, or explosives, whilst still detonating when handled by demining personnel. Additionally, electronic fuzes may have an inbuilt self-destruct capability i.e. some form of timer countdown designed to trigger detonation hours, days or even months after deployment, possibly whilst people are attempting to render the device safe. Although fuzes with a self-destruct capability are not anti-handling devices per se, they do add an extra complicating factor to the EOD process.
Home – 
Revised: 02/02/2013 – 22:19:39